Oversampling Converters

David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu)

Motivation

- Popular approach for medium-to-low speed A/D and D/A applications requiring high resolution

Easier Analog

- reduced matching tolerances
- relaxed anti-aliasing specs
- relaxed smoothing filters

More Digital Signal Processing

- Needs to perform strict anti-aliasing or smoothing filtering
- Also removes shaped quantization noise and decimation (or interpolation)

Quantization Noise

Quantizer

Model

- Above model is exact - approx made when assumptions made about $e(n)$
- Often assume $e(n)$ is white, uniformily distributed number between $\pm \Delta / 2$
- Δ is difference between two quantization levels

Quantization Noise

- White noise assumption reasonable when:
- fine quantization levels
- signal crosses through many levels between samples
- sampling rate not synchronized to signal frequency
- Sample lands somewhere in quantization interval leading to random error of $\pm \Delta / 2$

Quantization Noise

- Quantization noise power shown to be $\Delta^{2} / 12$ and is independent of sampling frequency
- If white, then spectral density of noise, $S_{e}(f)$, is constant.

Oversampling Advantage

- Oversampling occurs when signal of interest is bandlimited to f_{0} but we sample higher than $2 f_{0}$
- Define oversampling-rate

$$
\begin{equation*}
\mathrm{OSR}=f_{s} /\left(2 f_{0}\right) \tag{1}
\end{equation*}
$$

- After quantizing input signal, pass it through a brickwall digital filter with passband up to f_{0}

Oversampling Advantage

- Output quantization noise after filtering is:

$$
\begin{equation*}
P_{e}=\int_{-f_{s} / 2}^{f_{s} / 2} S_{e}^{2}(f)|H(f)|^{2} d f=\int_{-f_{0}}^{f_{0}} k_{x}^{2} d f=\frac{\Delta^{2}}{12}\left(\frac{1}{O S R}\right) \tag{2}
\end{equation*}
$$

- Doubling OSR reduces quantation noise power by 3dB (i.e. 0.5 bits/octave)
- Assuming peak input is a sinusoidal wave with a peak value of $2^{N}(\Delta / 2)$ leading to $P_{s}=\left(\left(\Delta 2^{N}\right) /(2 \sqrt{2})\right)^{2}$
- Can also find peak SNR as:

$$
\begin{equation*}
S N R_{\text {max }}=10 \log \left(\frac{P_{s}}{P_{e}}\right)=10 \log \left(\frac{3}{2} 2^{2 N}\right)+10 \log (O S R) \tag{3}
\end{equation*}
$$

Oversampling Advantage

Example

- A dc signal with 1 V is combined with a noise signal uniformily distributed between $\pm \sqrt{3}$ giving 0 dB SNR. $-\{0.94,-0.52,-0.73,2.15,1.91,1.33,-0.31,2.33\}$.
- Average of 8 samples results in 0.8875
- Signal adds linearly while noise values add in a square-root fashion - noise filtered out.
Example
- 1-bit A/D gives 6dB SNR.
- To obtain 96dB SNR requires 30 octaves of oversampling ((96-6)/3 dB/octave)
- If $f_{0}=25 \mathrm{kHz}, f_{s}=2^{30} \times f_{0}=54,000 \mathrm{GHz}$!

Advantage of 1-bit D/A Converters

- Oversampling improves SNR but not linearity
- To acheive 16-bit linear converter using a 12-bit converter, 12-bit converter must be linear to 16 bits — i.e. integral nonlinearity better than $1 / 2^{4}$ LSB
- A 1-bit D/A is inherently linear - 1-bit D/A has only 2 output points
- 2 points always lie on a straight line
- Can acheive better than 20 bits linearity without trimming (will likely have gain and offset error)
- Second-order effects (such as D/A memory or signaldependent reference voltages) will limit linearity.

Oversampling with Noise Shaping

- Place the quantizer in a feedback loop

Delta-Sigma Modulator

Oversampling with Noise Shaping

- Shapes quantization noise away from signal band of interest

Signal and Noise Transfer-Functions

$$
\begin{gather*}
S_{T F}(z) \equiv \frac{Y(z)}{U(z)}=\frac{H(z)}{1+H(z)} \tag{4}\\
N_{T F}(z) \equiv \frac{Y(z)}{E(z)}=\frac{1}{1+H(z)} \tag{5}\\
Y(z)=S_{T F}(z) U(z)+N_{T F}(z) E(z) \tag{6}
\end{gather*}
$$

- Choose $H(z)$ to be large over 0 to f_{0}
- Resulting quantization noise near 0 where $H(z)$ large
- Signal transfer-function near 1 where $H(z)$ large

Oversampling with Noise Shaping

- Input signal is limited to range of quantizer output when $H(z)$ large
- For 1-bit quantizers, input often limited to $1 / 4$ quantizer outputs
- Out-of-band signals can be larger when $H(z)$ small
- Stability of modulator can be an issue (particularily for higher-orders of $H(z)$
- Stability defined as when input to quantizer becomes so large that quantization error greater than $\pm \Delta / 2$ - said to "overload the quantizer"

First-Order Noise Shaping

- Choose $H(z)$ to be a discrete-time integrator

$$
\begin{equation*}
H(z)=\frac{1}{z-1} \tag{7}
\end{equation*}
$$

$u(n)$

- If stable, average input of integrator must be zero
- Average value of $u(n)$ must equal average of $y(n)$

Example

- The output sequence and state values when a dc input, $u(n)$, of $1 / 3$ is applied to a 1 'st order modulator with a two-level quantizer of ± 1.0. Initial state for $x(n)$ is 0.1 .

\mathbf{n}	$\mathbf{x}(\mathbf{n})$	$\mathbf{x}(\mathbf{n}+\mathbf{1})$	$\mathbf{y}(\mathbf{n})$	$\mathbf{e}(\mathbf{n})$
0	0.1	-0.5667	1.0	0.9
1	-0.5667	0.7667	-1.0	-0.4333
2	0.7667	0.1	1.0	0.2333
3	0.1	-0.5667	1.0	0.9
4	-0.5667	0.7667	-1.0	-0.4333
5	\ldots	\ldots	\cdots	\cdots

- Average of $y(n)$ is $1 / 3$ as expected
- Periodic quantization noise in this case

Transfer-Functions

Signal and Noise Transfer-Functions

$$
\begin{gather*}
S_{T F}(z)=\frac{Y(z)}{U(z)}=\frac{1 /(z-1)}{1+1 /(z-1)}=z^{-1} \tag{8}\\
N_{T F}(z)=\frac{Y(z)}{E(z)}=\frac{1}{1+1 /(z-1)}=\left(1-z^{-1}\right) \tag{9}
\end{gather*}
$$

- Noise transfer-function is a discrete-time differentiator (i.e. a highpass filter)

$$
\begin{align*}
N_{T F}(f) & =1-e^{-j 2 \pi f / f_{s}}=\frac{e^{j \pi f / f_{s}}-e^{-j \pi f / f_{s}}}{2 j} \times 2 j \times e^{-j \pi f / f_{s}} \tag{10}\\
& =\sin \left(\frac{\pi f}{f_{s}}\right) \times 2 j \times e^{-j \pi f / f_{s}}
\end{align*}
$$

Signal to Noise Ratio

Magnitude of noise transfer-function

$$
\begin{equation*}
\left|N_{T F}(f)\right|=2 \sin \left(\frac{\pi f}{f_{s}}\right) \tag{11}
\end{equation*}
$$

Quantization noise power

$$
\begin{equation*}
P_{e}=\int_{-f_{0}}^{f_{0}} S_{e}^{2}(f)\left|N_{T F}(f)\right|^{2} d f=\int_{-f_{0}}^{f_{0}}\left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}}\left[2 \sin \left(\frac{\pi f}{f_{s}}\right)\right]^{2} d f \tag{12}
\end{equation*}
$$

- Assuming $f_{0} \ll f_{s}$ (i.e., $O S R \gg 1$)

$$
\begin{equation*}
P_{e} \cong\left(\frac{\Delta^{2}}{12}\right)\left(\frac{\pi^{2}}{3}\right)\left(\frac{2 f_{0}}{f_{s}}\right)^{3}=\frac{\Delta^{2} \pi^{2}}{36}\left(\frac{1}{O S R}\right)^{3} \tag{13}
\end{equation*}
$$

Max SNR

- Assuming peak input is a sinusoidal wave with a peak value of $2^{N}(\Delta / 2)$ leading to $P_{s}=\left(\left(\Delta 2^{N}\right) /(2 \sqrt{2})\right)^{2}$
- Can find peak SNR as:

$$
\begin{align*}
\mathrm{SNR}_{\text {max }} & =10 \log \left(\frac{P_{s}}{P_{e}}\right) \\
& =10 \log \left(\frac{3}{2} 2^{2 N}\right)+10 \log \left[\frac{3}{\pi^{2}}(\text { OSR })^{3}\right] \tag{14}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
\mathrm{SNR}_{\max }=6.02 N+1.76-5.17+30 \log (O S R) \tag{15}
\end{equation*}
$$

- Doubling OSR gives an SNR improvement 9 dB or, equivalently, a benefit of 1.5 bits/octave

SC Implementation

Quantizer

Second-Order Noise Shaping

$$
\begin{gather*}
S_{T F}(f)=z^{-1} \tag{16}\\
N_{T F}(f)=\left(1-z^{-1}\right)^{2} \tag{17}\\
S N R_{\max }=6.02 N+1.76-12.9+50 \log (O S R) \tag{18}
\end{gather*}
$$

- Doubling $O S R$ improves SNR by 15 dB (i.e., a benefit of 2.5 bits/octave)

Noise Transfer-Function Curves

- Out-of-band noise increases for high-order modulators
- Out-of-band noise peak controlled by poles of noise transfer-function
- Can also spread zeros over band-of-interest

Example

- 90 dB SNR improvement from A/D with $f_{0}=25 \mathrm{kHz}$

Oversampling with no noise shaping

- From before, straight oversampling requires a sampling rate of $54,000 \mathrm{GHz}$.
First-Order Noise Shaping
- Lose 5 dB (see (15)), require 95 dB divided by $9 \mathrm{~dB} /$ octave, or 10.56 octaves - $f_{s}=2^{10.56} \times 2 f_{0} \cong 75 \mathrm{MHz}$
Second-Order Noise Shaping
- Lose 13 dB , required 103 dB divided by $15 \mathrm{~dB} /$ octave, $f_{s}=5.8 \mathrm{MHz}$ (does not account for reduced input range needed for stability).

Quantization Noise Power of 1-bit Modulators

- If output of 1 -bit mod is ± 1, total power of output signal, $y(n)$, is normalized power of 1 watt.
- Signal level often limited to well below ± 1 level in higher-order modulators to maintain stability
- For example, if maximum peak level is ± 0.25, max signal power is 62.5 mW .
- Max signal is approx 12 dB below quantization noise (but most noise in different frequency region)
- Quantization filter must have dynamic range capable of handling full power of $y(n)$ at input.
- Easy for A/D - digital filter
- More difficult for D/A - analog filter

Zeros of NTF are poles of $\mathbf{H}(\mathbf{z})$

- Write $H(z)$ as

$$
\begin{equation*}
H(z)=\frac{N(z)}{D(z)} \tag{19}
\end{equation*}
$$

- NTF is given by:

$$
\begin{equation*}
\operatorname{NTF}(z)=\frac{1}{1+H(z)}=\frac{D(z)}{D(z)+N(z)} \tag{20}
\end{equation*}
$$

- If poles of $H(z)$ are well-defined then so are zeros of NTF

Error-Feedback Structure

- Alternate structure to interpolative

- Signal transfer-function equals unity while noise transfer-function equals $G(z)$
- First element of $G(z)$ equals 1 for no delay free loops
- First-order system $-G(z)-1=-z^{-1}$
- More sensitive to coefficient mismatches

Architecture of Delta-Sigma A/D Converters

Time

Frequency

Architecture of Delta-Sigma A/D Converters

Time

Frequency

Architecture of Delta-Sigma A/D Converters

- Relaxes analog anti-aliasing filter
- Strict anti-aliasing done in digital domain
- Must also remove quantization noise before downsampling (or aliasing occurs)
- Commonly done with a multi-stage system
- Linearity of D/A in modulator important - results in overall nonlinearity
- Linearity of A / D in modulator unimportant (effects reduced by high gain in feedback of modulator)

Architecture of Delta-Sigma D/A Converters

$$
\begin{align*}
& x_{s}(n) \\
& x_{s 2}{ }^{(n)} \tag{c}\\
& \mathrm{X}_{\mathrm{lp}}{ }^{(\mathrm{n})} \quad \mathrm{X}_{\mathrm{dsm}}{ }^{(\mathrm{n})} \quad \mathrm{X}_{\mathrm{da}}{ }^{(\mathrm{t})}
\end{align*}
$$

Time
Frequency

Architecture of Delta-Sigma D/A Converters

Architecture of Delta-Sigma D/A Converters

- Relaxes analog smoothing filter (many multibit D/A converters are oversampled without noise shaping)
- Smoothing filter of first few images done in digital (then often below quantization noise)
- Order of lowpass filter should be at least one order higher than that of modulator
- Results in noise dropping off (rather than flat)
- Analog filter must attenuate quantization noise and should not modulate noise back to low freq - strong motivation to use multibit quantizers

Multi-Stage Digital Decimation

- Sinc filter removes much of quantization noise
- Following filter(s) - anti-aliasing filter and noise

Sinc Filter

- $\operatorname{sinc}^{\mathrm{L}+1}$ is a cascade of $\mathrm{L}+1$ averaging filters Averaging filter

$$
\begin{equation*}
T_{a v g}(z)=\frac{Y(z)}{U(z)}=\frac{1}{M} \sum_{i=0}^{M-1} z^{-i} \tag{21}
\end{equation*}
$$

- M is integer ratio of $f_{s} /\left(8 f_{0}\right)$
- It is a linear-phase filter (symmetric coefficients)
- If M is power of 2, easy division (shift left)
- Can not do all decimation filtering here since not sharp enough cutoff

Sinc Filter

- Consider $x_{\text {in }}(n)=\{1,1,-1,1,1,-1, \ldots\}$ applied to $M=4$ averaging filters in cascade

- $x_{1}(n)=\{0.5,0.5,0.0,0.5,0.5,0.0, \ldots\}$
- $x_{2}(n)=\{0.38,0.38,0.25,0.38,0.38,0.25, \ldots\}$
- $x_{3}(n)=\{0.34,0.34,0.31,0.34,0.34,0.31, \ldots\}$
- Converging to sequence of all $1 / 3$ as expected

Sinc Filter Response

- Can rewrite averaging filter in recursive form as

$$
\begin{equation*}
T_{a v g}(z)=\frac{Y(z)}{U(z)}=\frac{1}{M}\left(\frac{1-z^{-M}}{1-z^{-1}}\right) \tag{22}
\end{equation*}
$$

and a cascade of $L+1$ averaging filters results in

$$
\begin{equation*}
T_{\mathrm{sinc}}(z)=\frac{1}{M^{L+1}}\left(\frac{1-z^{-M}}{1-z^{-1}}\right)^{L+1} \tag{23}
\end{equation*}
$$

- Use $L+1$ cascade to roll off quantization noise faster than it rises in L^{\prime} th order modulator

Sinc Filter Frequency Response

- Let $z=e^{j \omega}$

$$
\begin{equation*}
T_{a v g}\left(e^{j \omega}\right)=\frac{\operatorname{sinc}\left(\frac{\omega M}{2}\right)}{\operatorname{sinc}\left(\frac{\omega}{2}\right)} \tag{24}
\end{equation*}
$$

where $\operatorname{sinc}(x) \equiv \sin (x) / x$

Sinc Implementation

- If 2's complement arithmetic used, wrap-around okay since followed by differentiators

Higher-Order Modulators

- An L'th order modulator improves SNR by $6 \mathrm{~L}+3 \mathrm{~dB}$ /octave

Interpolative Architecture

$u(n)$

- Can spread zeros over freq of interest using resonators with f_{1} and f_{2}
- Need to worry about stability (more later)

MASH Architecture

- Multi-stAge noise SHaping - MASH
- Use multiple lower order modulators and combine outputs to cancel noise of first stages

MASH Architecture

- Output found to be:

$$
\begin{equation*}
Y(z)=z^{-2} U(z)-\left(1-z^{-1}\right)^{2} E_{2}(z) \tag{26}
\end{equation*}
$$

Multibit Output

- Output is a 4-level signal though only single-bit D/A's — if D/A application, then linear 4-level D/A needed - if A/D, slightly more complex decimation

A/D Application

- Mismatch between analog and digital can cause firstorder noise, e_{1}, to leak through to output
- Choose first stage as higher-order (say 2'nd order)

Bandpass Oversampling Converters

- Choose $H(z)$ to have high gain near freq f_{c}
- NTF shapes quantization noise to be small near f_{c}
- OSR is ratio of sampling-rate to twice bandwidth - not related to center frequency

Bandpass Oversampling Converters

$u(n)$

- Above $H(z)$ has poles at $\pm j$ (which are zeros of NTF) - $H(z)$ is a resonator with infinite gain at $f_{s} / 4$
$-H(z)=z /\left(z^{2}+1\right)$
- Note one zero at +j and one zero at -j - similar to lowpass first-order modulator - only $9 \mathrm{~dB} /$ octave
- For $15 \mathrm{~dB} /$ octave, need 4'th order BP modulator

Modulator Stability

- Since feedback involved, stability is an issue
- Considered stable if quantizer input does not overload quantizer
- Non-trivial to analyze due to quantizer
- There are rigorous tests to guarantee stability but they are too conservative
- For a 1-bit quantizer, heuristic test is:

$$
\begin{equation*}
\left|N_{T F}\left(e^{j \omega}\right)\right| \leq 1.5 \quad \text { for } 0 \leq \omega \leq \pi \tag{27}
\end{equation*}
$$

- Peak of NTF should be less than 1.5
- Can be made more stable by placing poles of NTF closer to its zeros
- Dynamic range suffers since less noise power pushed out-of-band

Modulator Stability

Stability Detection

- Might look at input to quantizer
- Might look for long strings of 1 s or 0 s at comp output When instability detected ...
- reset integrators
- Damp some integrators to force more stable

Linearity of Two-Level Converters

- For high-linearity, levels should NOT be a function of input signal
- power supply variation might cause symptom
- Also need to be memoryless - switched-capacitor circuits are inherently memoryless if enough settling-time allowed
- Above linearity issues also applicable to multi-level
- A nonreturn-to-zero is NOT memoryless
- Return-to-zero is memoryless if enough settling time
- Important for continuous-time D/A

Linearity of Two-Level Converters

Idle Tones

- $1 / 3$ into 1 'st order modulator results in output

$$
\begin{equation*}
y(n)=\{1,1,-1,1,1,-1,1,1, \ldots\} \tag{28}
\end{equation*}
$$

- Fortunately, tone is out-of-band at $f_{s} / 3$
- $(1 / 3+1 / 24)=3 / 8$ into modulator has tone at $f_{s} / 16$
- Similar examples can cause tones in band-of-interest and are not filtered out - say $f_{s} / 256$
- Also true for higher-order modulators
- Human hearing can detect tones below noise floor
- Tones might not lie at single frequency but be short term periodic patterns.
- could be a tone varying between 900 and 1100 Hz varying in a random-like pattern

Dithering

Dither signal

- Add pseudo-random signal into modulator to break up idle tones (not just mask them)
- If added before quantizer, it is noise shaped and large dither can be added.
- A/D: few bit D/A converter needed
- D/A: a few bit adder needed
- Might affect modulator stability

Opamp Gain

- Finite opamp gain, A, moves pole at $z=1$ left by $1 / A$

- Flattens out noise at low frequency - only $3 \mathrm{~dB} /$ octave for high OSR
- Typically, require

$$
\begin{equation*}
A>O S R / \pi \tag{29}
\end{equation*}
$$

Multi-bit Oversampled Converters

- A multi-bit DAC has many advantages - more stable - higher peak |NTF|
- higher input range
- less quantization noise introduced
- less idle tones (perhaps no dithering needed)
- Need highly linear multi-bit D/A converters

Example

- A 4-bit DAC has 18 dB less quantization noise, up to 12 dB higher input range - perhaps 30 dB improved SNR over 1-bit

Large Advantage in DAC Application

- Less quantization noise - easier analog lowpass filter

Multi-bit Oversampled Converters

- Randomize thermometer code
- Can also "shape" nonlinearities

Third-Order A/D Design Example

- All NTF zeros at $z=1$

$$
\begin{equation*}
\operatorname{NTF}(z)=\frac{(z-1)^{3}}{D(z)} \tag{30}
\end{equation*}
$$

- Find $D(z)$ such that $\left|N T F\left(e^{j \omega}\right)\right|<1.4$
- Use Matlab to find a Butterworth highpass filter with peak gain near 1.4
- If passband edge at $f_{s} / 20$ then peak gain $=1.37$

$$
\begin{equation*}
N T F(z)=\frac{(z-1)^{3}}{z^{3}-2.3741 z^{2}+1.9294 z-0.5321} \tag{31}
\end{equation*}
$$

Third-Order A/D Design Example

- Find $H(z)$ as

$$
\begin{gather*}
H(z)=\frac{1-N T F(z)}{N T F(z)} \tag{32}\\
H(z)=\frac{0.6259 z^{2}-1.0706 z+0.4679}{(z-1)^{3}} \tag{33}
\end{gather*}
$$

Third-Order A/D Design Example

- Choosing a cascade of integrator structure

- α_{i} coefficients included for dynamic-range scaling
- initially $\alpha_{2}=\alpha_{3}=1$
- last term, α_{1}, initially set to β_{1} so input is stable for a reasonable input range
- Initial β_{i} found by deriving transfer function from 1-bit D/A output to V_{3} and equating to $-H(z)$

Third-Order A/D Design Example

$$
\begin{equation*}
H(z)=\frac{z^{2}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)-z\left(\beta_{2}+2 \beta_{3}\right)+\beta_{3}}{(z-1)^{3}} \tag{34}
\end{equation*}
$$

- Equating (33) and (34) results in

$$
\begin{align*}
\alpha_{1}=0.0232, \quad \alpha_{2}=1.0, & \alpha_{3}=1.0 \\
\beta_{1}=0.0232, \quad \beta_{2}=0.1348, & \beta_{3}=0.4679 \tag{35}
\end{align*}
$$

Third-Order A/D Design Example

Dynamic Range Scaling

- Apply sinusoidal input signal with peak value of 0.7 and frequency $\pi / 256 \mathrm{rad} /$ sample
- Simulation shows max values at nodes V_{1}, V_{2}, V_{3} of $0.1256,0.5108$, and 1.004
- Can scale node V_{1} by k_{1} by multiplying α_{1} and β_{1} by k_{1} and dividing α_{2} by k_{1}
- Can scale node V_{2} by k_{2} by multiplying α_{2} / k_{1} and β_{2} by k_{2} and dividing α_{3} by k_{2}

$$
\begin{array}{lll}
\alpha_{1}^{\prime}=0.1847, & \alpha_{2}^{\prime}=0.2459, & \alpha_{3}^{\prime}=0.5108 \\
\beta_{1}^{\prime}=0.1847, & \beta_{2}^{\prime}=0.2639, & \beta_{3}^{\prime}=0.4679 \tag{36}
\end{array}
$$

Third-Order A/D Design Example

